New DMX³

Efficient protection up to 4000 A

AIR CIRCUIT BREAKERS | PRODUCT GUIDE

47 legrand ${ }^{\circ}$

NEW DMX³ ACBs UP TO 4000 A

EFFICIENT PROTECTION AND CONTROL FOR ALL TYPE OF BUILDINGS

Optimized performance up to 4000 A

| DMX ${ }^{3}$ air circuit breakers and $D X^{3}$ - 1 isolating switches are available in two frame sizes. Three breaking capacities for circuit breakers: 50 kA for the $\mathrm{DMX}{ }^{3}-\mathrm{N}$ designation 65 kA for $D \mathrm{DX}^{3}-\mathrm{H}$ and 100 kA for $\mathrm{DMX}^{3}-\mathrm{L}$.
| The range covers 8 rated currents, between 800 A and 4000 A .
| All range of $D M X^{3}$ air circuit breakers and $D M X^{3}-\mid$ isolating switches is available in fixed and draw-out version.

BREAKING CAPACITIES AND RATED CURRENTS

	800 A	1000 A	1250 A	1600 A	2000 A	2500 A
DMX3-N	3200 A	4000 A				
DMX3$^{3}-\mathrm{H}$	$50 \mathrm{kA} \mid$ FIXED/DRAW-OUT					
DMX3-L	$65 \mathrm{kA} \mid$ FIXED/DRAW-OUT					

OVERAL DIMENSIONS AND WEIGHT

Fixed version

		Height	Depth	Width	Weight	
FRAME 1: DMX3-N 2500 DMX3-H 2500	3P	414 mm	354 mm	273 mm	41 kg	
	4P	414 mm	354 mm	358 mm	48 kg	
FRAME 2: DMX3-L 2500 DMX3-N/H/L 4000	3P	414 mm	354 mm	396 mm	59 kg	
	4P	414 mm	354 mm	526 mm	76 kg	
Draw-out version						
		Height	Depth	Width	Weight	
FRAME 1: DMX3-N 2500 DMX3-H 2500	3P	465 mm	433 mm	316 mm	77 kg	
	4P	465 mm	433 mm	401 mm	94 kg	
FRAME 2: DMX3-L 2500 DMX3-N/H/L 4000	3P	465 mm	433 mm	414 mm	108 kg	
	4P	465 mm	433 mm	544 mm	137 kg	

LEGRAND ADVANTAGE

The overal dimensions of the breaker contribute considerably to an efficient use of the space inside the electrical panel. The constant depth for all the rated currents facilitates connection of the busbars.

OTHER ELECTRICAL FEATURES

Rated operational voltage Ue: $690 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ Rated insulation voltage Ui: $1000 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ Rated impulse withstand voltage Uimp: 12 kV Category of use: B

Ambient temperature: $-5^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Humidity: $+55^{\circ} \mathrm{C}$ with relative humidity of 95%, conforms to IEC 68-2-30

The following settings are adjusted using rotary selector switches:

- Long time delay protection against overloads: Ir
- Long delay protection operation time: tr
- Short time delay protection against short circuits: Im
- Neutral protection: IN

MP4 LSI ELECTRONIC PROTECTION UNIT CAT. N ${ }^{\circ} 28801$

The following settings are adjusted using rotary selector switches:

- Long time delay protection against overloads: Ir
- Long delay protection operation time: tr
- Short time delay protection against short circuits: Im
- Short time delay protection operation time: tm
- Instantaneous protection against very high short circuits: Ii
- Neutral protection: IN

MP4 LSIg ELECTRONIC PROTECTION UNIT CAT. N ${ }^{\circ} 28802$

The following settings are adjusted

 using rotary selector switches:- Long time delay protection against overloads: Ir
- Long delay protection operation time: tr
- Short time delay protection against short circuits: Im
- Short time delay protection operation time: tm
- Instantaneous protection against very high short circuits: li
- Earth fault current: Ig
- Time delay on earth fault tripping: tg

- Neutral protection: IN

LEGRAND ADVANTAGE

All protection units are equipped with batteries so you can monitor the parameters even when the breaker is not connected.

INFORMATION

All DMX3 breakers are factory equipped with any MP4 protection unit LI, LSI or LSIg according to your requirements. You just need to select and indicate the 2 catalogue numbers when placing the order (1 for the breaker and 1 for the tripping unit).

Fast clipping control accessories

| You can remotely control the $D M X^{3}$ thanks to its range of accessories: shunt trips, undervoltage releases, motor operators and closing coils.
| All the control accessories are simply clipped on to the front panel of the circuit breaker, which is especially configured in order to facilitate the clipping.
| Every type of accessory is compatible with its own location, in order to avoid any possible mistake.

All control accessories can be easily installed without any special tool and in a very short time． The installation is to be done on the front panel of the air circuit breaker．In that way，the separation between power and control circuits is guaranteed．

SHUNT TRIP

Shunt trips are devices used for the remote instantaneous opening of the air circuit breaker．They are generally controlled trough an N／O type contact．The actual offer of shunt trips proposes different supply voltages （from 24 V to 415 V ），compatibles with AC and DC currents．The shunt trips are already equipped with a special fast connector，to be directly inserted into auxiliary contacts block．An auxiliary contact is connected in series with the coil，cutting off its power supply when the main poles are open．

Technical characteristics：

－Nominal voltage Un： $24 \mathrm{~V} \sim /=; 48 \mathrm{~V} /=$ ；
$110 \mathrm{~V} /=; 220 \mathrm{~V} \sim /=; 415 \mathrm{~V} \sim$
－Tolerance on nominal voltage：
70 to 110% Vn
－Maximum power consumption
（max．power for 180 ms ）： $500 \mathrm{VA} \sim / 500 \mathrm{~W}=$
－Continuous power： $5 \mathrm{VA} / 5 \mathrm{~W}=$
－Maximum opening time： 30 ms
－Insulation voltage： 2500 V 50 Hz for 1 min
－Endurance on pulse：surge proof $4 \mathrm{kV} \mathrm{1.2/50} \mathrm{\mu s}$

CLOSING COILS

These coils are used for remotely controlling the closing of the power contacts of the circuit breaker．The springs of the circuit breaker are to be loaded prior to the action of the closing coils．They are controlled by an N／O type contact．

Technical characteristics：
－Nominal voltage Un： $24 \mathrm{~V} \sim /=; 48 \mathrm{~V} /=$ ； $110 \mathrm{~V} \sim /=; 220 \mathrm{~V} \sim /=; 415 \mathrm{~V}$
－Tolerance on nominal voltage：
70 to 110% Vn
－Maximum power consumption
（max．power for 180 ms ）： $500 \mathrm{VA} \sim / 500 \mathrm{~W}=$
－Continuous power： $5 \mathrm{VA} \sim / 5 \mathrm{~W}=$
－Maximum closing time： 50 ms
－Insulation voltage： 2500 V 50 Hz for 1 min
－Endurance on pulse：surge proof
$4 \mathrm{kV} 1.2 / 50 \mu \mathrm{~s}$

Technical characteristics：

－Nominal voltage Un： $24 \mathrm{~V} \sim /=; 48 \mathrm{~V}$／＝；
$110 \mathrm{~V} /=; 220 \mathrm{~V} \sim /=; 415 \mathrm{~V}$
－Tolerance on nominal voltage：
85 to 110% Vn
－Maximum power consumption
（max．power for 180 ms ）： $500 \mathrm{VA} \sim / 500 \mathrm{~W}=$
－Continuous power： $5 \mathrm{VA} \sim / 5 \mathrm{~W}=$
－Opening time： 60 ms
－Insulation voltage： 2500 V 50 Hz for 1 min
－Endurance on pulse：surge proof
$4 \mathrm{kV} \mathrm{1.2/50} \mathrm{\mu s}$

LEGRAND ADVANTAGE

Electrical connection is made in no time thanks to the fast connector supplied
on all above accessories．

Shunt trip： 1
Undervoltage release： 1
Closing coils： 1

Motor operators, are used for remotely reloading the springs of the circuit breaker mechanism immediately after the device closes. The device can thus be re-closed almost immediately after an opening operation. To motorise a DMX3 it is necessary to add a release coil (undervoltage release or shunt trip) and a closing coil. If the supply voltage of the controls fails, it is still possible to reload the springs manually. Motor-driven controls have "limit switch" contacts which cut off the power supply of their motor after the springs have been reloaded. Motor operators are easy to mount, with only three screws.

```
Technical characteristics:
- Nominal voltage Un:
\(24 \mathrm{~V} \sim /=, 48 \mathrm{~V} \sim /=, 110 \mathrm{~V} \sim /=\),
\(230 \mathrm{~V} \sim /=, 415 \mathrm{~V} \sim\)
- Tolerance on nominal voltage:
85 to \(110 \%\) Vn
- Spring reloading time: 5s
- Maximum power consumption:
140 VA~/140 W =-
- Starting current: 2 up to \(3 \ln 0.1\) s
- Maximum cycle: \(2 / \mathrm{min}\)
```


Fixed version equipped with padlocking system

Draw-out version equipped with key-operated locks

Easy identification of control accessories

| Electrical auxiliaries are connected on the front panel on terminal blocks provided for this purpose. Accessories are identified on the front panel.
| As the cover has window, it is easy to ascertain, which devices are fitted on the circuit breaker.

SIGNALLING CONTACTS

U2		U1	ELECTRIC CHARGING DEVICE	READY TO CLOSE	SPRINGS Charged
164	RC	161			
154	SC	151			

FIXED VERSION-CHOOSE YOUR CONNECTION ACCESSORIES: 3 POSSIBILITIES

The type of rear terminals can be easily changed according to your needs.

The breaker is supplied with rear terminals for horizontal connection

REAR TERMINALS FOR FLAT CONNECTION

[^0]
REAR TERMINALS FOR VERTICAL CONNECTION

This type of connection uses 2 accessories:
the previous rear terminals for flat connection, which must be equipped with the vertical ones.

Frame 1:
3P: Cat. №. 28884 + Cat. No. 28882
4P: Cat. №. $28885+$ Cat. №. 28883

SPREADERS

For any situation requiring a bigger width for a safe connection (i.e. aluminium bus bars).

Frame 1:

3 types of accessories

- For flat connection

3P: Cat. N. 28886
4P: Cat. N‥ 28887

- For vertical connection

3P: Cat. N. 28888
4P: Cat. N .28889

- For horizontal connection

3P: Cat. №. 28890
4P: Cat. N. 28891

Connection: maximum adaptability

| The fixed version of DMX ${ }^{3}$ is equipped with rear terminals for horizontal connection with bars.
| You can change connection type according to your needs.

DRAW-OUT VERSION-CHOOSE YOUR CONNECTION ACCESSORIES

Draw-out version of the DMX3 breakers is supplied with rear terminals for flat connection with bars. You can easily transform those terminals into vertical or horizontal type by using the unique reversible connector.

The breaker is supplied with rear terminals for flat connection

2 TYPES OF FIXING

Reversible connector for vertical or

horizontal connection.

Frame 1:
3P: Cat. $N^{\circ} .28896$
4P: Cat. N. 28897
Frame 2:
3P: Cat. $N^{\circ} .28894$
4P: Cat. $N^{\circ} .28895$

FLAT CONNECTION USING THE REAR TERMINALS OF THE BREAKER

Connection: maximum adaptability (continued)

I The draw-out version is equipped with rear terminals for flat connection with bars.

Draw-out version of the DMX³ breakers is supplied with rear terminals for flat connection with bars.
You can easily transform those terminals into vertical or horizontal type by using the unique reversible connector.

CONNECTIONS: A FEW RECOMMENDATIONS !

Connections provide the electrical connection of equipment and are also responsible
for a considerable proportion of their heat dissipation.
Connections must never be under-sized.
Plates or terminals must be used over a maximum area.
Heat dissipation is encouraged by arranging the bars vertically. If an uneven number of bars is connected, place the higher number of bars on the upper part of the terminal.
Avoid bars running side by side: this causes poor heat dissipation and vibrations.
Place spacers between the bars to maintain a distance between them which
is at least equivalent to their thickness.

Continuity of service and increased safety

| Supply invertors answer the double need of continuity of service and greater safety (security). Traditionally used in hospitals, public buildings, industries with continuous manufacturing processes, airports and military applications, supply invertors become increasingly required for new applications such as telecommunications and computing treatment or in the management of energy sources, notably those say "renewable energies".

AUTOMATIC SUPPLY INVERTORS

All DMX3 air circuit breakers (fixed and draw-out version) can be fitted with an interlocking system which guarantees "mechanical safety" in the event of supply inversion. Interlocking is achieved using a cable system and interlocking units mounted on each circuit breaker. Every circuit breaker composing the supply invertor must be equipped with one interlocking unit.
This system allows devices of different sizes and types (3P, 4P, fixed, draw-out) to be interlocked. DMX ${ }^{3}$ devices can be installed in different configurations inside the enclosure.
This mechanical interlocking system can be supplemented by motorised operators and an automation control unit making the invertor fully automatic.
The Legrand automatic control unit Cat. $N^{\circ} 26193$ allows to easily manage the automatic switching of two sources.
Controlled by a microprocessor, the unit is fully programmable. All the parameters are adjustable: values of the thresholds of tension, temporization between switching, starting up of a generator ...

Control panel of a supply invertor with automation control unit Cat. $\mathrm{N}^{\circ} 26193$

Example of algorithm for the functioning of an automatic supply invertor

The two DMX³ devices (D1 and D2) are connected to a central common busbar. Since they are not simultaneously on-load, they can be in the same enclosure.

STAND-BY POWER SUPPLY (WITH LOAD SHEDDING)

The two DMX ${ }^{3}$ devices (D1 and D2) are not on-load simultaneously and can therefore be installed in the same enclosure. D3 can be on-load at the same time as D1, and must be installed in another enclosure.

Flexible configurations (Examples of supply invertors)

| Supply invertor assures the following functions:

- Switching between a main source and a secondary source in order to supply the circuits requiring continuous service (for safety reasons) or for energy saving purpose (when the secondary source is different from the network).
- Management of the functioning of the secondary source (power generator) supplying the safety circuits.

The two DMX ${ }^{3}$ devices (D1 and D2) draw current on a common busbar. They can only be installed in the same enclosure if the sum of their currents does not exceed the permissible value for the recommended size.

DUAL POWER SUPPLY (REDUCED POWER WITH PRIORITY LOADS)

Flexible configurations (Examples of supply invertors) (continued)

| $D M X^{3}$ and $D X^{3}$-I devices can be fitted with an interlocking mechanism which guarantees "mechanical safety" in the event of supply inversion.
\| Interlocking is achieved using interlocking units mounted on the side of the devices and a cable system.

MECHANICAL INTERLOCK FOR 2 CIRCUIT BREAKERS

D1 is used for the main power supply of the installation (normal functioning), D2 for emergency power supply via power generator (in case of mains fault). For this configuration the two breakers can be simultaneously open, but can not be closed in the same time.

INFORMATION

This system allows devices of different sizes and types to be interlocked.
The cable system provides the flexibility to install $D M X^{3}$ devices in a vertical configuration in the same enclosure or in a horizontal configuration in different columns.

Easy to install mechanical interlock system

 (The choice of cable for mechanical interlock)| Mechanical interlock is set up using cables and a mechanical interlock device and can interlock 2 or 3 devices, which may be different type in a vertical or horizontal configuration.
I The interlock device is mounted on the right-hand side of the air circuit breaker.

CABLE LENGTH SELECTION TABLE		
Length (mm)	Type	Cat. ${ }^{\circ}$
2600	1	$\mathbf{2 8 9} 20$
3000	2	$\mathbf{2 8 9} 21$
3600	3	$\mathbf{2 8 9} 22$
4000	4	$\mathbf{2 8 9 2 3}$
4600	5	$\mathbf{2 8 9} 24$
5600	6	$\mathbf{2 8 9} 25$

2 DMX ${ }^{3}$ - HORIZONTAL CONFIGURATION

Required cable length: $L=1430+H$

3 DMX ${ }^{3}$ - VERTICAL + HORIZONTAL CONFIGURATION

Required cable length:
$\mathrm{L}=1570+\mathrm{V}$

EXAMPLES FOR 3 AIR CIRCUIT BREAKERS

Distance between air circuit breakers (mm)	Horizontal				
	800 mm	725 mm	1000 mm	1450 mm	2000 mm
	1000 mm	Type 2	Type 3	Type 4	Type 5
	1600 mm	Type 3 4	Type 3	Type 4	Type 5
	2000 mm	Type 5	Type 5	Type 5	Type 6

Be free to choose XL³ fully adaptable enclosure

It is very easy to create the configuration you want thanks to the different available sizes of $\mathrm{XL}{ }^{3} 4000$ enclosures: 2 widths, 3 depths, and 2 heights. | A full range of accessories, such as dedicated fixing plates and faceplates, facilitates the integration of DMX ${ }^{3}$ devices inside XL^{3} enclosures.

INTEGRATION INTO XL ${ }^{3} 4000$ ENCLOSURES

	FRAME 1 DMX ${ }^{3} 2500$		FRAME 2 DMX ${ }^{3} 2500$ AND DMX ${ }^{3} 4000$	
XL ${ }^{3} 4000$ 24 MODULES USABLE WIDTH 600 MM	3P	4P	3P	$4 \mathrm{P}^{(1)}$
	FIXED OR DRAW-OUT		FIXED OR DRAW-OUT	
				(\%)
	Depth of enclosures: 725 or 975 mm		Depth of enclosures: 725 or 975 mm up to 2500 A 975 mm up to 4000 A	

${ }^{(1)}$ Except supply invertors

	FRAME 1 DMX ${ }^{3} 2500$		FRAME 2 DMX ${ }^{3} 2500$ AND DMX 4000	
XL ${ }^{3} 4000$ 36 MODULES USABLE WIDTH 850 MM	3P	4P	3P	4P
	FIXED OR DRAW-OUT		FIXED OR DRAW-OUT	
	Depth of enclosures: 725 or 975 mm		Depth of enclosures: 725 or 975 mm up to 2500 A 975 mm up to 4000 A	

Optimized space and reduced width of main distribution board:
$\mathrm{XL}^{3} 4000-600 \mathrm{~mm}$ width enclosures can be equipped with frame 2 air circuit breakers
thanks to their compact size.
The correct size for the enclosure, and thus the power to be dissipated, is obtained by adapting the depth of the assembly:

- 725 mm min. up to 2500 A
- 975 mm min. up to 4000 A

DMX ${ }^{3}$ DRAW-OUT VERSION

Be free to choose XL³ fully adaptable enclosure (continued)

| DMX ${ }^{3}$ circuit breakers and switches are mounted on horizontal plates.
| Four different plates are available for fixed version or draw-out version of the breaker and for 24 modules (width 600 mm) and 36 modules (width 850 mm) XL ${ }^{3} 4000$ enclosures. They consist of a horizontal plate and a strengthening crosspiece.

FIXING PLATES SELECTION CHART

DMX ${ }^{3}$ devices are placed on the plate and fixed using screws and nuts.
The use of lifting equipment is strongly recommended for placing DMX^{3} devices on the plate.

Version		DMX ${ }^{3}$ fixed version		DMX ${ }^{3}$ draw-out version	
$\mathrm{XL}^{3} 4000$ enclosure type		24 modules $(600 \mathrm{~mm}$ width)	36 modules (850 mm width)	24 modules $(600 \mathrm{~mm}$ width)	36 modules (850 mm width)
$\begin{aligned} & D M X^{3} \text { - N } 2500 \\ & D M X^{3} \text { - H } 2500 \\ & D M X^{3} \text { L } 2500 \\ & D M X^{3} \text { - I } 2500 \end{aligned}$	3P 4 P	20751	20752	20753	20754
DMX ${ }^{3}$ - N 4000 DMX ${ }^{3}$ - H 4000 DMX ${ }^{3}$ - L 4000 DMX ${ }^{3}$ - 14000	$3 P$ $4 P$				

FACEPLATES SELECTION CHART

All XL³ 4000 metallic faceplates are equipped with hinges and locks
in order to facilitate installation and maintenance operations.

Version		DMX ${ }^{3}$ fixed version		DMX ${ }^{3}$ draw-out version	
$\begin{aligned} & \mathrm{XL}^{3} 4000 \\ & \text { enclosure type } \end{aligned}$		24 modules $(600 \mathrm{~mm}$ width)	36 modules (850 mm width)	24 modules $(600 \mathrm{~mm}$ width)	36 modules (850 mm width)
$\begin{aligned} & D M X^{3}-N 2500 \\ & D M X^{3}-H 2500 \\ & D M X^{3}-12500 \end{aligned}$	3P 4 P	20938	20948	20938	20948
DMX ${ }^{\text { }}$ - L 2500	3P	20938		20938	
	4 P	20939		20939	
$\begin{aligned} & D M X^{3}-N 4000 \\ & D M X^{3}-H 4000 \end{aligned}$	3P	20938		20938	
$\begin{aligned} & \text { DMX }{ }^{3} \text { - L } 4000 \\ & \text { DMX }^{3}-14000 \end{aligned}$	4P	20939		20939	

4 legrand

DMX 2500 and 4000
air circuit breakers from 800 to 4000 A

Dimensions (p. 30 to 33)
Electrical characteristics (p. 34 to 41)
Air circuit breakers equipped with:

- electronic protection unit (to be ordered together for factory assembly). Please ask for DMX ${ }^{3}$ order form (mandatory)
- auxiliary contacts

Pack	Cat.Nos		Fixed version
			Supplied with rear terminals for horizontal connection
			DMX ${ }^{3}$ - N 2500 Breaking capacity Icu $50 \mathrm{kA}(415 \mathrm{~V}$ ~)
1	${ }^{3 P}$ Frame $1{ }^{4}$		${ }^{\text {In }}$ (A)
1	2862228632		1000
1	2862328633		1250
1	2862428634		1600
	2862528626	$\begin{aligned} & 28635 \\ & 28636 \end{aligned}$	2000
1			2500
			DMX ${ }^{\text {- H }} \mathbf{2 5 0 0}$
			Breaking capacity Icu $65 \mathrm{kA}(415 \mathrm{~V} \sim)$ In (A)
	$\begin{gathered} \text { Frame } 1 \\ 28 \mathrm{PP} \\ 286 \\ \hline \end{gathered}$		800
1	$28642 \quad 28652$		1000
1	2864328653		1250
1	2864428654		1600
111	2864528646		2000
			2500
			DMX ${ }^{\text {- L }} 2500$
	Frame 2		Breaking capacity Icu $100 \mathrm{kA}(415 \mathrm{~V}$)
1	28661	28671	800
1	$28662 \quad 28672$		1000
1	2866328673		1250
1	2866428674		1600
1	2866628676		2000
			2500
1			DMX ${ }^{\text {- }} \mathrm{N} 4000$
			Breaking capacity Icu $50 \mathrm{kA}(415 \mathrm{~V}$)
1			$\begin{aligned} & \ln (A) \\ & 3200 \end{aligned}$
1			4000
			DMX ${ }^{\text {- H }} 4000$
			Breaking capacity Icu $65 \mathrm{kA}(415 \mathrm{~V}$)
1	3P 28647 28657 28648 28658		
			4000
	Frame 2		DMX ${ }^{\text {- }}$ L 4000
			Breaking capacity Icu $100 \mathrm{kA}(415 \mathrm{~V} \sim)$
1	28667	28677	3200
1	28668	28678	4000

Pack	Cat.Nos		Draw-out version
	Frame 1		Supplied with a base equipped with flat rear terminals and lockable safety shutters
			DMX ${ }^{3}$ - $\mathbf{N} 2500$
			Breaking capacity Icu 50 kA (415 V)
1	28721	28731	$\begin{aligned} & \ln (\mathrm{A}) \\ & 800 \end{aligned}$
1	28722	28732	1000
1	28723	28733	1250
1	28724	28734	1600
1	28725	28735	2000
1	28726	28736	2500
			DMX ${ }^{3}$ - H 2500
	Frame 1		Breaking capacity Icu 65 kA (415 V~)
1	28741	28751	800
1	28742	28752	1000
1	28743	28753	1250
1	28744	28754	1600
1	28745	28755	2000
1	28746	28756	2500
	Frame 2		DMX ${ }^{\text {- L }} 2500$
			Breaking capacity Icu 100 kA (415 V~)
1	$\begin{gathered} 3 P \\ 28761 \end{gathered}$	28771	$\begin{aligned} & \ln (A) \\ & 800 \end{aligned}$
1	28762	28772	1000
1	28763	28773	1250
1	28764	28774	1600
1	28765	28775	2000
1	2876628776		2500
			DMX ${ }^{3}$ - N 4000
	Frame 2		Breaking capacity Icu 50 kA (415 V~)
1	$\begin{array}{r} 3 P \\ 28727 \end{array}$	28737	$\begin{aligned} & \ln (A) \\ & 3200 \end{aligned}$
1	2872828738		4000
			DMX ${ }^{3}$ - H 4000
	Frame 2		Breaking capacity Icu 65 kA (415 V)
	${ }^{38} \times 74$	4P 287	$\begin{aligned} & \text { In (A) } \\ & 200 \end{aligned}$
1	28747	28757	3200
1	28748	28758	4000
			DMX ${ }^{\text {- }}$ L 4000
	${ }_{3 P}$ Frame 2		Breaking capacity Icu 100 kA (415 V~)
	28767	28777	$\begin{aligned} & \ln (A) \\ & 3200 \end{aligned}$
1	28768	28778	4000

Settings and curves (p. 34 to 39)

DMX 32500 and 4000 circuit breakers can be equipped with MP4 electronic protection units (to be ordered together for factory assembly) enabling very precise adjustments of the protection conditions, while maintaining total discrimination with downstream devices
Integrated LCD screen for displaying: current values, fault adjustment and log
MP4 protection units are equipped with batteries for powering in case of mains fault or when the breaker is open or not connected

Electronic protection units MP4 LSI

28801 Electronic protection unit with LCD screen with Im, tm , Ir, tr and li adjustments on the front

Electronic protection unit MP4 LSIg
28802 Electronic protection unit with LCD screen with Im, $\mathrm{tm}, \mathrm{Ir}, \mathrm{tr}, \mathrm{li}, \lg$ and tg adjustments on the front

Accessories for electronic protection units
288 05 ${ }^{(1)}$
Communication option for DMX^{3} electronic protection units
2880612 V DC external power supply for DMX ${ }^{3}$ electronic protection units
$28807^{(1)}$ Earth leakage module for DMX ${ }^{3}$ electronic protection units
288 11 ${ }^{(1)}$ External neutral
288 12 ${ }^{(1)}$ Module programmable output

DMX ${ }^{3}$-I
trip free switches from 1250 to 4000 A

Dimensions (p. 30 to 33) Technical characteristics (p. 34 to 41)

Trip free switches equipped with:

- rear terminals
- auxiliary contacts

Pack	Cat.Nos		Fixed version
	Frame 1		DMX ${ }^{3}$-I 2500
	${ }^{3 P}$	${ }^{4 P}$	$\ln (\mathrm{A})$
1	28683	28693	1250
1	28684	28694	1600
1	28685	28695	2000
1	28686	28696	2500
	Frame 2		DMX ${ }^{3} \mathrm{I} 4000$
		${ }^{4 P}$	$\ln (\mathrm{A})$
1	28687	28697	3200
1	28688	28698	4000

Draw-out version

Supplied with a base equipped with flat rear terminals and lockable safety shutters
DMX ${ }^{3}$-I 2500
In (A)
1250
1600
2000
2500
DMX ${ }^{3}$-I 4000
In (A)
3200
4000

41 legrand

auxiliaries and accessories

DMX 2500 and 4.000
equipment for supply invertors

26193
Technical characteristics (p. 33)

DMX 2500 and 4.000
rear terminals

28864

Automation control unit

For setting the conditions for supply inversion, generator on/off, status acquisition for DMX and DPX circuit-breakers, open/closed
Power supply: 230 V ~ and 12-24-48 V=
Connection by plug-in terminals
26193 Standard unit
26194 Communicating unit, enabling data transmission (RS 485 port)

Equipment for supply invertors

The mechanical interlock is set up using cables and can interlock 2 or 3 devices, which may be different type in a vertical or horizontal configuration
The interlock unit is mounted on the right-hand side of the device
Cable interlock to be ordered separately (see below) Interlock for DMX³ frame 1
28865 Interlock for DMX ${ }^{3}$ frame 2

1	28920
1	28921
1	28922
1	28923
1	28924
1	28925

Cable interlock

Type 1 (2600 mm)
28921 Type $2(3000 \mathrm{~mm}$)
28923 type $3(3600 \mathrm{~mm}$)
28924 Type $5(4600 \mathrm{~mm})$
28925 Type 6 (5600 mm)

Dimensions (p. 30 to 33)

Pack	Cat.Nos	
1	28884	$4 P$
1	28885	
1	28882	28883
1	28896	28897
1	28892	28893
1	28894	28895

Rear terminals

For DMX ${ }^{3}$ frame 1 fixed version
For flat connection with bars
To be fixed onto horizontal rear terminals of the circuit breaker
For vertical connection with bars
Those terminals are used in order to transform a flat connection into a vertical one
To be fixed onto Cat.No 288 84/85
according to the number of poles
For DMX ${ }^{3}$ frame 1 draw-out version
For vertical or horizontal connection with bars To be fixed onto plate rear terminals of the circuit breaker

For DMX ${ }^{3}$ frame 2 fixed version

For flat connection with bars
To be fixed onto horizontal rear terminals of the circuit breaker

For DMX ${ }^{3}$ frame 2 fixed or draw-out version

On DMX ${ }^{3}$ fixed version :

- For vertical connection with bars
- To be fixed onto Cat.No 288 92/93 according to the number of poles
On DMX^{3} draw-out version :
- For vertical or horizontal connection with bars
- To be fixed directly onto plate rear terminals of the circuit breaker

Spreaders for DMX ${ }^{3}$ frame 1 fixed version

To be fixed onto horizontal rear terminals of the circuit breaker
For flat connection with bars
For vertical connection with bars
For horizontal connection with bars

L7 legrand

DMX ${ }^{3} 2500$ and D MX 3-l 2500 - frame 1
dimensions

■ Fixed version - frame 1

Rear terminals fixed version

Rear terminals for flat connection with bars
Cat. Nos 288 84/85

Rear terminals for vertical connection with bars Cat. Nos 288 82/83

■ Fixed version - frame 1 (continued)
Spreaders for flat connection with bars

Spreaders for vertical connection with bars

Cat.No 28888

Spreaders for horizontal connection with bars
Cat.No 28890

■ Draw-out version - frame 1

Rear terminals for vertical or horizontal connection with bars
Cat.Nos 288 96/97

L7legrand

DMX ${ }^{3} \mathbf{2 5 0 0}$, DMX 3-I 2500, DMX $^{3} 4000$ and DMX 3-| 4000 - frame 2 dimensions

■ Fixed version - frame 2

Rear terminals fixed version

3P version

Rear terminals for flat connection with bars
Cat. No 28892

Cat. No 28893

Cat. Nos 288 92/93

DMX ${ }^{3} 2500$ and 4000
automation control units for supply invertors

Draw-out version - frame 2

3P version

4 P version

4P rear view

Rear terminals for vertical or horizontal connection with bars Cat.Nos 288 94/95

■ Functions

Standard unit Cat.No 26193
Used to adjust and manage the source inversion operating conditions (DMX ${ }^{3}$):

- Remote control (opening/closing) of MCBs
- Microprocessor output from unit (positive safety)
- Programmable I/O
- Voltage reading: 3-phase
phase-neutral
phase-phase
- Control (on/off) of generator set
- Indication of the state of the MCBs (open/closed/tripped)
- Source inversion blocked in the event of:
- Tripping of 1 or 2 devices
- If a draw-out ACB is not inserted in its base, as the open/close command of the unit is inoperative

Communicating unit Cat.No 26194

All the standard functions, plus:

- Maximum voltage reading
- Reading of phase rotation direction
- Frequency reading
- Communication: data transmission via the RS 485 port (Modbus protocol)

■ Technical characteristics

Power supply: 187 to 264 V
9 to $65 \mathrm{~V}=$
Frequency: 45 to 65 Hz
Un: 80 to 690 V~
Control relay (1 and 4): 1 NO - $12 \mathrm{~A}-250 \mathrm{~V} \sim$
1 NO-5A-250 V~
1 NO/NC - $5 \mathrm{~A}-250 \mathrm{~V} \sim$
Cable cross-section: 0.2 to $2.5 \mathrm{~mm}^{2}$
Dimensions (width \times height \times depth): $144 \times 144 \times 90 \mathrm{~mm}$
Protection: IP 20 at the rear
IP 41 at the front
IP 54 at the front with protective screen
Operating temperature: $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

	Operating ranges
Main/secondary minimum voltage range	$70-98 \%$ Un
Main/secondary voltage absence range	$60-85 \%$ Un
Main/secondary minimum voltage delay	$0.1-900 \mathrm{~s}$
Main/secondary voltage absence delay	$0.1-30 \mathrm{~s}$
Generator operating delay	$0-900 \mathrm{~s}$
Main to secondary switching delay	$0.1-90 \mathrm{~s}$
Main line presence delay	$1-3600 \mathrm{~s}$
Secondary to main switching delay	$0.1-90 \mathrm{~s}$
Generator set stopping delay	$1-3600 \mathrm{~s}$

Dimensions and panel board faceplate cut-out

41 legrand

DMX ${ }^{3} 2500$ and DMX ${ }^{3} 4000$

electronic protection units

- Settings of the electronic protection units

MP4 LI

Ir, li, tr adjustment on front panel
$\mathrm{t}(\mathrm{s}) \mathrm{A}$

- Long time delay protection against overloads

Ir from 0.4 to $1 \times \ln (6+6$ steps) on two selectors
($0.4 \div 0.9$, by steps of 0.1 and $0.0 \div 0.1$, by steps of 0.02)

- Long delay protection operation time
tr - at $6 \times \operatorname{lr}(4+4$ steps $)$
$\operatorname{tr}=5-10-20-30 \mathrm{~s}($ MEM ON) 30-20-10-5 s (MEM OFF)
- Instantaneous protection against very high short circuits li from 2 to $15 \times$ In or Icw (9 steps) li $=2-3-4-6-8-10-12-15 \times$ In or Icw
- Neutral protection: IN = I-II-III-IV x Ir (0-50-100-100 \%)

MP4 LSI

Ir, tr, Im, tm, li adjustment on front panel
$\left.{ }^{\mathrm{t}} \mathrm{s}\right) \uparrow$

- Long time delay protection against overloads

Ir from 0.4 to $1 \times \ln (6+6$ steps $)$ on two selectors $(0.4 \div 0.9$, by steps of 0.1 and $0.0 \div 0.1$, by steps of 0.02)

- Long delay protection operation time

tr - at $6 \times \operatorname{Ir}(4+4$ steps $) \operatorname{tr}=5-10-20-30 \mathrm{~s}(\mathrm{MEM}$ ON) 30-20-10-5 s (MEM OFF)

- Short time delay protection against short circuits

Im from 1.5 to $10 \times \operatorname{lr}(9$ steps) $\mathrm{Im}=1.5-2-2.5-3-4-5-6-8-10 \times \mathrm{Ir}$

- Short time delay protection operation time
tm from 0 to $0.3 \mathrm{~s}(4+4$ steps) $\mathrm{tm}=0-0.1-0.2-0.3 \mathrm{~s}$ ($\mathrm{t}=$ cost), 0.3-0.2-$0.1-0.01 \mathrm{~s}$ (I2t=cost)
- Instantaneous protection against very high short circuits li from 2 to $15 \times$ In or Icw (9 steps) li $=2-3-4-6-8-10-12-15 \times$ In or Icw
- Neutral protection: IN = I-II-III-IV X Ir (0-50-100-100 \%)

MP4 LSIg

Ir, tr, li, Ig, tg, Im, tm, adjustment on front panel

- Long time delay protection against overloads

Ir from 0.4 to $1 \times \ln (6+6$ steps) on two selectors
($0.4 \div 0.9$, by steps of 0.1 and $0.0 \div 0.1$, by steps of 0.02)

- Long delay protection operation time

$\operatorname{tr}-$ at $6 \times \operatorname{Ir}(4+4$ steps) $\operatorname{tr}=5-10-20-30 \mathrm{~s}$ (MEM ON)
30-20-10-5 s (MEM OFF)

- Short time delay protection against short circuits

Im from 1.5 to $10 \times \operatorname{Ir}(9$ steps) $\mathrm{Im}=1.5-2-2.5-3-4-5-6-8-10 \mathrm{x}$ Ir

- Short time delay protection operation time
tm from 0 to $0.3 \mathrm{~s}(4+4$ steps $) \mathrm{tm}=0-0.1-0.2-0.3 \mathrm{~s}$ ($\mathrm{t}=$ constant $)$, 0.3-0.2-0.t01 s (I2t=constant)
- Instantaneous protection against very high short circuits
li from 2 to $15 \times$ In or Icw (9 steps) li $=2-3-4-6-8-10-12-15 \times \ln$ or Icw

- Earth fault current

Ig from 0.2 to $1 \times \ln (9$ steps)

- Time delay on earth fault tripping
tg from 0.1 to $1 \times \ln$ (4 steps)
- Neutral protection: IN = I-II-III-IV x Ir (0-50-100-100 \%)

Llegrand

selectivity table $D M X^{3} / D P X^{\top M}$ and $D M X^{3} / D X^{\top M}$

■ Limits of selectivity $\mathrm{DMX}^{3} / \mathrm{DPX}^{\mathrm{TM}}$ (three phase circuit at $400 \mathrm{~V} \sim$)

Downstream MCCB	Upstream ACB								
	In	$\begin{gathered} \mathrm{DMX}^{3} 2500 \\ (50 \mathrm{kA} / 65 \mathrm{kA} / 100 \mathrm{kA}) \\ \hline \end{gathered}$						$\begin{gathered} \text { DMX }^{3} 4000 \\ (50 \mathrm{kA} / 65 \mathrm{kA} / 100 \mathrm{kA}) \\ \hline \end{gathered}$	
		800	1000	1250	1600	2000	2500	3200	4000
DPX 125 (16 kA / 25 kA / 36 kA)	16	T	T	T	T	T	T	T	T
	25	T	T	T	T	T	T	T	T
	40	T	T	T	T	T	T	T	T
	63	T	T	T	T	T	T	T	T
	100	T	T	T	T	T	T	T	T
	125	T	T	T	T	T	T	T	T
DPX 160 / 250 ER (25 kA / 36 kA / 50 kA)	63	T	T	T	T	T	T	T	T
	100	T	T	T	T	T	T	T	T
	160	T	T	T	T	T	T	T	T
	250	T	T	T	T	T	T	T	T
DPX 250 thermal magnetic ($36 \mathrm{kA} / 70 \mathrm{kA} / 100 \mathrm{kA}$)	40	T	T	T	T	T	T	T	T
	63	T	T	T	T	T	T	T	T
	100	T	T	T	T	T	T	T	T
	160	T	T	T	T	T	T	T	T
	250	T	T	T	T	T	T	T	T
DPX 250 S1 / S2 ($36 \mathrm{kA} / 70 \mathrm{kA} / 100 \mathrm{kA}$)	40	T	T	T	T	T	T	T	T
	100	T	T	T	T	T	T	T	T
	160	T	T	T	T	T	T	T	T
	250	T	T	T	T	T	T	T	T
DPX 630 thermal magnetic ($36 \mathrm{kA} / 70 \mathrm{kA} / 100 \mathrm{kA}$)	250	T	T	T	T	T	T	T	T
	320	T	T	T	T	T	T	T	T
	400	T	T	T	T	T	T	T	T
	500	T	T	T	T	T	T	T	T
	630	T	T	T	T	T	T	T	T
DPX 630 S1 / S2 ($36 \mathrm{kA} / 70 \mathrm{kA} / 100 \mathrm{kA}$)	250	T	T	T	T	T	T	T	T
	400	T	T	T	T	T	T	T	T
	630	T	T	T	T	T	T	T	T
DPX 1250 thermal magnetic ($50 \mathrm{kA} / 70 \mathrm{kA}$)	800	-	T	T	T	T	T	T	T
	1000	-	-	T	T	T	T	T	T
	1250	-	-	-	T	T	T	T	T
$\begin{aligned} & \text { DPX } 1600 \mathrm{~S} 1 / \mathrm{S} 2 \\ & (50 \mathrm{kA} / 70 \mathrm{kA}) \end{aligned}$	800	-	T	T	T	T	T	T	T
	1250	-	-	-	T	T	T	T	T
	1600	-	-	-	-	T	T	T	T

T: total selectivity, up to downstream circuit breaker breaking capacity according to IEC 60947-2

■ Limits of selectivity DMX ${ }^{3} /$ DX $^{\text {TM }}$ (three phase circuit at $400 \mathrm{~V}_{\sim}$)

Downstream MCB	Upstream ACB								
	In	$\begin{gathered} \mathrm{DMX}^{3} 2500 \\ (50 \mathrm{kA} / 65 \mathrm{kA} / 100 \mathrm{kA}) \end{gathered}$						$\begin{gathered} \text { DMX }^{3} 4000 \\ (50 \mathrm{kA} / 65 \mathrm{kA} / 100 \mathrm{kA}) \end{gathered}$	
		800	1000	1250	1600	2000	2500	3200	4000
DX 6000-10 kA B and C curves	1 to 125 A	T	T	T	T	T	T	T	T
DX-H 10000-25 kA B and C curves	1 to 63 A	T	T	T	T	T	T	T	T
DX 6000-15 kA D curve	1 to 63 A	T	T	T	T	T	T	T	T
DX-L 50 kA C curve	10 to 63 A	T	T	T	T	T	T	T	T

T: total selectivity, up to downstream circuit breaker breaking capacity according to IEC 60947-2

41 legrand

selectivity table $\mathrm{DMX}^{3} / \mathrm{DMX}^{3}$

\square Limits of selectivity $\mathrm{DMX}^{3} / \mathrm{DMX}^{3}$ (three phase circuit at 400 V)

Downstream ACB	Upstream ACB												
	In	$\begin{gathered} \text { DMX }^{3}-\mathrm{N} 2500 \\ (50 \mathrm{kA}) \end{gathered}$						$\begin{gathered} \text { DMX }^{3}-\mathrm{H} 2500 \\ (65 \mathrm{kA}) \end{gathered}$					
		800	1000	1250	1600	2000	2500	800	1000	1250	1600	2000	2500
$\begin{aligned} & \text { DM } X^{3}-N 2500 \\ & (50 \mathrm{kA}) \end{aligned}$	800	-	T	T	T	T	T	T	T	T	T	T	T
	1000	-	-	T	T	T	T	-	T	T	T	T	T
	1250	-	-	-	T	T	T	-	-	T	T	T	T
	1600	-	-	-	-	T	T	-	-	-	T	T	T
	2000	-	-	-	-	-	T	-	-	-	-	T	T
	2500	-	-	-	-	-	-	-	-	-	-	-	T
$\begin{aligned} & \text { DMX }^{3}-\text { H } 2500 \\ & (65 \mathrm{kA}) \end{aligned}$	800	-	-	-	-	-	-	-	T	T	T	T	T
	1000	-	-	-	-	-	-	-	-	T	T	T	T
	1250	-	-	-	-	-	-	-	-	-	T	T	T
	1600	-	-	-	-	-	-	-	-	-	-	T	T
	2000	-	-	-	-	-	-	-	-	-	-	-	T
	2500	-	-	-	-	-	-	-	-	-	-	-	-

T: total selectivity, up to downstream circuit breaker breaking capacity according to IEC 60947-2

Downstream ACB	Upstream ACB								
	In	$\begin{gathered} \text { DMX }^{3}-\mathrm{L} 2500 \\ (100 \mathrm{kA}) \end{gathered}$						$\begin{aligned} & \text { DMX }^{3}-\mathrm{L} 4000 \\ & (100 \mathrm{kA}) \end{aligned}$	
		800	1000	1250	1600	2000	2500	3200	4000
$\begin{aligned} & \text { DMX }{ }^{3}-\mathrm{N}_{2500} \\ & (50 \mathrm{kA}) \end{aligned}$	800	T	T	T	T	T	T	T	T
	1000	-	T	T	T	T	T	T	T
	1250	-	-	T	T	T	T	T	T
	1600	-	-	-	T	T	T	T	T
	2000	-	-	-	-	T	T	T	T
	2500	-	-	-	-	-	T	T	T
$\begin{aligned} & \text { DMX }^{3}-\text { H } 2500 \\ & (65 \mathrm{kA}) \end{aligned}$	800	T	T	T	T	T	T	T	T
	1000	-	T	T	T	T	T	T	T
	1250	-	-	T	T	T	T	T	T
	1600	-	-	-	T	T	T	T	T
	2000	-	-	-	-	T	T	T	T
	2500	-	-	-	-	-	T	T	T
$\begin{aligned} & \text { DMX }{ }^{3} \text { - L } 2500 \\ & (100 \mathrm{kA}) \end{aligned}$	800	-	T	T	T	T	T	T	T
	1000	-	-	T	T	T	T	T	T
	1250	-	-	-	T	T	T	T	T
	1600	-	-	-	-	T	T	T	T
	2000	-	-	-	-	-	T	T	T
	2500	-	-	-	-	-	-	T	T
$\begin{aligned} & \text { DMX }^{3}-\mathrm{N}^{2} 4000 \\ & (100 \mathrm{kA}) \end{aligned}$	3200	-	-	-	-	-	-	-	T
	4000	-	-	-	-	-	-	-	-

T: total selectivity, up to downstream circuit breaker breaking capacity according to IEC 60947-2

back-up between ACBs and MCCBs

■ Back-up between DMX ${ }^{3}$ / DPX ${ }^{\text {TM }}$ (according to IEC 64-8/5)

An automatic DPX circuit breaker may be used to break short circuits higher than its rated breaking capacity, if an upstream DMX ${ }^{3}$ circuit breaker will simultaneously open the circuit The action of the two breakers working together favours the arc extinction and reduces the pass through energy
The breaking capacity of the A + B association is greater than that of the downstream breaker B and may reach the Icu value of the upstream circuit breaker A
These values can only be validated by short circuit tests (according to IEC 60947-2 norm)

Downstream MCCB	Upstream ACB							
	$\begin{gathered} \text { DMX }^{3}-\mathrm{N} 2500 \\ \text { Icu }=50 \mathrm{kA} \end{gathered}$						$\begin{gathered} \text { DMX }{ }^{3}-\mathrm{N} 4000 \\ \mathrm{Icu}=50 \mathrm{kA} \end{gathered}$	
	800	1000	1250	1600	2000	2500	800	1000
DPX 125	50	50	50	50	50	50	50	50
DPX 160 / DPX 250 ER	50	50	50	50	50	50	50	50
DPX 250	50	50	50	50	50	50	50	50
DPX 630	50	50	50	50	50	50	50	50
DPX 1250-800 A	50	50	50	50	50	50	50	50
DPX 1250-1000 A	-	50	50	50	50	50	50	50
DPX 1250-1250 A	-	-	50	50	50	50	50	50
DPX 1600	-	-	-	50	50	50	50	50

Downstream MCCB	Upstream ACB							
	$\begin{aligned} & \text { DMX }^{3}-\mathrm{H} 2500 \\ & \text { Icu }=65 \mathrm{kA} \end{aligned}$						$\begin{gathered} \text { DMX }^{3}-\mathrm{H} 4000 \\ \text { Icu }=65 \mathrm{kA} \end{gathered}$	
	800	1000	1250	1600	2000	2500	800	1000
DPX 125	65	65	65	65	65	65	65	65
DPX 160 / DPX 250 ER	65	65	65	65	65	65	65	65
DPX 250	65	65	65	65	65	65	65	65
DPX 630	65	65	65	65	65	65	65	65
DPX 1250-800 A	65	65	65	65	65	65	65	65
DPX 1250-1000 A	-	65	65	65	65	65	65	65
DPX 1250-1250 A	-	-	65	65	65	65	65	65
DPX 1600	-	-	-	65	65	65	65	65

Downstream MCCB	Upstream ACB							
	$\begin{gathered} \text { DMX }^{3}-\mathrm{L} 2500 \\ \text { Icu }=100 \mathrm{kA} \end{gathered}$						$\begin{aligned} & \text { DMX }^{3}-\mathrm{L} 4000 \\ & \text { Icu }=100 \mathrm{kA} \end{aligned}$	
	800	1000	1250	1600	2000	2500	800	1000
DPX 125	100	100	100	100	100	100	100	100
DPX 160 / DPX 250 ER	100	100	100	100	100	100	100	100
DPX 250	100	100	100	100	100	100	100	100
DPX 630	100	100	100	100	100	100	100	100
DPX 1250-800 A	100	100	100	100	100	100	100	100
DPX 1250-1000 A	-	100	100	100	100	100	100	100
DPX 1250-1250 A	-	-	100	100	100	100	100	100
DPX 1600	-	-	-	100	100	100	100	100

L7legrand

DMX ${ }^{3} 2500$ and 4000

- Tripping curves for MP4 protection units

- Tripping curves for MP4 protection units

■ Ground fault tripping curve for MP4 LSIg protection unit

■ Pass-through specific energy characteristic

tlegrand

DMX ${ }^{3} 2500$ and 4000

technical characteristics

- Technical characteristics

DMX ${ }^{3} 2500$

DMX ${ }^{3}$ acording to IEC 60947-2		DMX ${ }^{3} 2500$																	
		800			1000			1250			1600			2000			2500		
		N	H	L	N	H	L	N	H	L	N	H	L	N	H	L	N	H	L
Number of poles		3P-4P																	
Rating In (A)		800			1000			1250			1600			2000			2500		
Rated insulation voltage Ui (V)		1000			1000			1000			1000			1000			1000		
Rated impulse withstand voltage	Vimp (kV)	12			12			12			12			12			12		
Rated operational voltage (50/60	Ue (V)	690			690			690			690			690			690		
Frame		1		2	1		2	1		2	1		2	1		2	1		2
Ultimate breaking capacity Icu (kA)	230 V	50	65	100	50	65	100	50	65	100	50	65	100	50	65	100	50	65	100
	415 V	50	65	100	50	65	100	50	65	100	50	65	100	50	65	100	50	65	100
	500 V	50	65	100	50	65	100	50	65	100	50	65	100	50	65	100	50	65	100
	600 V	50	60	75	50	60	75	50	60	75	50	60	75	50	60	75	50	60	75
	690 V	50	55	65	50	55	65	50	55	65	50	55	65	50	55	65	50	55	65
Service breaking capacity Ics (\% Icu)		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Short-circuit making capacity Icm (kA)	230 V	105	143	220	105	143	220	105	143	220	105	143	220	105	143	220	105	143	220
	415 V	105	143	220	105	143	220	105	143	220	105	143	220	105	143	220	105	143	220
	500 V	105	143	220	105	143	220	105	143	220	105	143	220	105	143	220	105	143	220
	$600 \mathrm{~V}_{2}$	105	132	165	105	132	165	105	132	165	105	132	165	105	132	165	105	132	165
	690 V	105	121	143	105	121	143	105	121	143	105	121	143	105	121	143	105	121	143
Short time withstand current Icw (kA) for $\mathrm{t}=1 \mathrm{~s}$	230 V	50	65	85	50	65	85	50	65	85	50	65	85	50	65	85	50	65	85
	415 V	50	65	85	50	65	85	50	65	85	50	65	85	50	65	85	50	65	85
	500 V	50	65	85	50	65	85	50	65	85	50	65	85	50	65	85	50	65	85
	$600 \mathrm{~V}_{2}$	50	60	75	50	60	75	50	60	75	50	60	75	50	60	75	50	60	75
	$690 \mathrm{~V}_{\sim}$	50	55	65	50	55	65	50	55	65	50	55	65	50	55	65	50	55	65
Category of use		B			B			B			B			B			B		
Isolation behavior		YES																	
Endurance (cycles)	mechanical	10000			10000			10000			10000			10000			10000		
	electrical	5000			5000			5000			5000			5000			5000		

DMX ${ }^{3} 4000$

DMX ${ }^{3}$ acording to IEC 60947-2		DMX ${ }^{3} 4000$					
		3200			4000		
		N	H	L	N	H	L
Number of poles		3P-4P			3P-4P		
Rating In (A)		3200			4000		
Rated insulation voltage Ui (V)		1000			1000		
Rated impulse withstand voltage	mp (kV)	12			12		
Rated operational voltage ($50 / 60 \mathrm{H}$	z) Ue (V)	690			690		
Frame		2			2		
Ultimate breaking capacity Icu (kA)	230 V	50	65	100	50	65	100
	415 V	50	65	100	50	65	100
	500 V	50	65	100	50	65	100
	600 V	50	60	75	50	60	75
	$690 \mathrm{~V}_{\sim}$	50	55	65	50	55	65
Service breaking capacity Ics (\% Icu)		100	100	100	100	100	100
Short-circuit making capacity Icm (kA)	230 V	105	143	220	105	143	220
	415 V	105	143	220	105	143	220
	500 V	105	143	220	105	143	220
	600 V	105	132	165	105	132	165
	$690 \mathrm{~V}_{\sim}$	105	121	143	105	121	143
Short time withstand current Icw (kA) for $t=1 \mathrm{~s}$	230 V	50	65	85	50	65	85
	415 V	50	65	85	50	65	85
	500 V	50	65	85	50	65	85
	600 V	50	60	75	50	60	75
	$690 \mathrm{~V}_{2}$	50	55	65	50	55	65
Category of use		B			B		
Isolation behavior		YES			YES		
Endurance (cycles)	mechanical	10000			10000		
	electrical	5000			5000		

DMX ${ }^{3}$ - I 2500 and 4000

DMX ${ }^{3}$ - I acording to IEC 60947-3		DMX ${ }^{3} \mathrm{I} 2500$				DMX ${ }^{3} \mathrm{I} 4000$	
		1250	1600	2000	2500	3200	4000
Number of poles		3P-4P	3P-4P	3P-4P	3P - 4P	3P-4P	3P-4P
Rating In (A)		1250	1600	2000	2500	3200	4000
Rated insulation voltage Ui (V)		1000	1000	1000	1000	1000	1000
Rated impulse withstand voltage Uimp (kV)		12	12	12	12	12	12
Rated operational voltage ($50 / 60 \mathrm{~Hz}$) Ue (V)		690	690	690	690	690	690
Frame		1	1	1	1	2	2
Short-circuit making capacity Icm (kA)	230 V	105	105	105	105	105	105
	415 V	105	105	105	105	105	105
	500 V	105	105	105	105	105	105
	600 V	88	88	88	88	88	88
	$690 \mathrm{~V}_{\sim}$	63	63	63	63	63	63
Short time withstand current Icw (kA) for $t=1 \mathrm{~s}$	230 V	50	50	50	50	50	50
	415 V	50	50	50	50	50	50
	500 V	50	50	50	50	50	50
	600 V	42	42	42	42	42	42
	$690 \mathrm{~V}_{\sim}$	36	36	36	36	36	36
Isolation behavior		YES	YES	YES	YES	YES	YES
Endurance (cycles)	mechanical	10000	10000	10000	10000	10000	10000
	electrical	5000	5000	5000	5000	5000	5000

41 legrand

Temperature derating

Fixed version

Temperature	$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$65^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	$\operatorname{Imax}(\mathrm{A})$	Ir / In	$\operatorname{Imax}(\mathrm{A})$	Ir / In	Imax (A)	Ir / In	Imax (A)	Ir / In	Imax (A)	Ir / In
DMX ${ }^{3} 2500$	800	1	800	1	800	1	800	1	800	1
	1000	1	1000	1	1000	1	1000	1	1000	1
	1250	1	1250	1	1250	1	1250	1	1250	1
	1600	1	1600	1	1600	1	1600	1	1600	1
	2000	1	2000	1	1960	0.98	1920	0.96	1880	0.94
	2500	1	2450	0.98	2350	0.94	2250	0.9	2150	0.86
DMX ${ }^{3} 4000$	3200	1	3200	1	3200	1	3136	0.98	3008	0.94
	4000	1	3920	0.98	3680	0.92	3440	0.86	3120	0.78

Draw-out version

Temperature	$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$65^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	Imax (A)	Ir / In	$\operatorname{Imax}(\mathrm{A})$	Ir / In	Imax (A)	Ir / In	$\operatorname{Imax}(\mathrm{A})$	Ir / In	Imax (A)	Ir / In
DMX ${ }^{3} 500$	800	1	800	1	800	1	800	1	800	1
	1000	1	1000	1	1000	1	1000	1	1000	1
	1250	1	1250	1	1250	1	1250	1	1250	1
	1600	1	1600	1	1600	1	1600	1	1600	1
	2000	1	2000	1	1960	0.98	1920	0.96	1875	0.94
	2500	1	2400	0.96	2250	0.9	2100	0.84	1950	0.78
DMX ${ }^{3} 4000$	3200	1	3200	1	3200	1	3072	0.96	2880	0.9
	4000	1	3760	0.94	3440	0.86	3200	0.8	2960	0.74

Derating at different altitudes

Air circuit breaker	DMX $^{3} \mathbf{2 5 0 0}$ and $\mathbf{D M X ~}^{\mathbf{3}} \mathbf{4 0 0 0}$			
Altitude H (m)	<2000	3000	4000	5000
Rated current (at $\mathbf{4 0 ^ { \circ }} \mathbf{C}$) In (A)	\ln	$0.98 \times \ln$	$0.94 \times \ln$	$0.90 \times \ln$
Rated voltage Ue (V)	690	600	500	440
Rated insulation voltage Ui (V)	1000	900	750	600

- Minimum recommended dimension of busbars per pole

In (A)	Vertical bars (mm)	Horizontal bars (mm)
$\mathbf{6 3 0}$	50×10	60×10
$\mathbf{8 0 0}$	60×10	60×10
$\mathbf{1 0 0 0}$	80×10	80×10
$\mathbf{1 2 5 0}$	80×10	$2 \times 60 \times 10$
$\mathbf{1 6 0 0}$	$2 \times 60 \times 10$	$2 \times 80 \times 10$
$\mathbf{2 0 0 0}$	$2 \times 80 \times 10$	$3 \times 80 \times 10$
$\mathbf{2 5 0 0}$	$3 \times 80 \times 10$	$3 \times 80 \times 10$
$\mathbf{3 2 0 0}$	$3 \times 100 \times 10$	$3 \times 100 \times 10$
$\mathbf{4 0 0 0}$	$4 \times 100 \times 10$	$5 \times 100 \times 10$

Note: The tables presenting the minimum recommended dimensions of connection plates and bars per pole should be used solely as a general guideline for selecting products. Due to extensive variety of switchgear constructions shapes and conditions that can affect the behavior of the apparatus, the solution used must always be verified

41 legrand

World Headquarters and International Department 87045 LIMOGES CEDEX FRANCE
Tel. : + 33555068787
Fax : + 33555067575
www.legrandgroup.com

[^0]: Frame 2:
 3P: Cat. No. 28892
 4P: Cat. N.

